Rampe class of attractors
Ten types of attractors with similar characteristics
Rampe3 mod.
preset values
3D attractors are point clouds generate from sequences of numbers pn{xn,yn,zn} ⇒ pn ∈ R3, n ∈ N,
where n0→∞ denotes the step of the iteration process starting from a initial p0{x0,y0,z0} point.
In the cloud each next point is function of the previous one:
\[ \eqalign { x_{i+1} = \xi(x_i, y_i, z_i) & \\ y_{i+1} = \phi(x_i, y_i, z_i) & \\ z_{i+1} = \psi(x_i, y_i, z_i) & } \qquad \Bigg\{ \eqalign { & x, y, z \in R \\ & [0, i, n_{\rightarrow\infty}[ \text{ } \Rightarrow i,n \in N \\ } \]
In the computational code:
p(x,y,z) rappresent the i-th point pi{xi,yi,zi}
kj→m are constant values characteristic of any single attractor, where k ∈ R3 and [0,j,m] ⇒ j,m ∈ N
pNew ∈ R3 is the new point: pi+1{xi+1,yi+1,zi+1} that will calculated
In the ATTRACTORS window of glChAoS.P:
left side panel contains starting point coordinates p0{x0,y0,z0}
right side panel contains constant values used in the expression of the current attractor, where: kj{x,y,z} = k[j](x,y,z)
kj values can also be generated randomly between [min, kj, max] interval.
Colors are indicative of point speed: distance between pi and pi+1
You can to start wglChAoS.P with a specific attractor directly from explore button.
Select lowResources for low resources devices (e.g. mobile devices)
Resolution:
X
render in new window
|
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) + cos(k_{1x} \centerdot y_i) \\ y_{i+1} & = x_i \centerdot sin(k_{0y} \centerdot y_i) + cos(k_{1y} \centerdot z_i) \\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot z_i) + cos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)+cos(k[1].x*p.y); pNew.y = p.x*sin(k[0].y*p.y)+cos(k[1].y*p.z); pNew.z = p.y*sin(k[0].z*p.z)+cos(k[1].z*p.x);
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) + arccos(k_{1x} \centerdot y_i) \\ y_{i+1} & = x_i \centerdot sin(k_{0y} \centerdot y_i) + arccos(k_{1y} \centerdot z_i) \\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot z_i) + arccos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)+acos(k[1].x*p.y); pNew.y = p.x*sin(k[0].y*p.y)+acos(k[1].y*p.z); pNew.z = p.y*sin(k[0].z*p.z)+acos(k[1].z*p.x);
\begin{align} x_{i+1} & = x_i z_i \centerdot sin(k_{0x} \centerdot x_i) - \arccos(k_{1x} \centerdot y_i) \\ y_{i+1} & = y_i x_i \centerdot sin(k_{0y} \centerdot y_i) - \arccos(k_{1y} \centerdot z_i) \\ z_{i+1} & = z_i y_i \centerdot sin(k_{0z} \centerdot z_i) - \arccos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.x*p.z*sin(k[0].x*p.x)-cos(k[1].x*p.y); pNew.y = p.y*p.x*sin(k[0].y*p.y)-cos(k[1].y*p.z); pNew.z = p.z*p.y*sin(k[0].z*p.z)-cos(k[1].z*p.x);
\begin{align} x_{i+1} & = z_i^2 \centerdot sin(k_{0x} \centerdot x_i) - \arccos(k_{1x} \centerdot y_i) \\ y_{i+1} & = x_i^2 \centerdot sin(k_{0y} \centerdot y_i) - \arccos(k_{1y} \centerdot z_i) \\ z_{i+1} & = y_i^2 \centerdot sin(k_{0z} \centerdot z_i) - \arccos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.z*p.z*sin(k[0].x*p.x)-cos(k[1].x*p.y); pNew.y = p.x*p.x*sin(k[0].y*p.y)-cos(k[1].y*p.z); pNew.z = p.y*p.y*sin(k[0].z*p.z)-cos(k[1].z*p.x);
\begin{align} x_{i+1} & = x_i \centerdot sin(k_{0x} \centerdot x_i) + cos(k_{1x} \centerdot y_i) \\ y_{i+1} & = y_i \centerdot sin(k_{0y} \centerdot y_i) + cos(k_{1y} \centerdot z_i) \\ z_{i+1} & = z_i \centerdot sin(k_{0z} \centerdot z_i) + cos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.x*sin(k[0].x*p.x)+cos(k[1].x*p.y); pNew.y = p.y*sin(k[0].y*p.y)+cos(k[1].y*p.z); pNew.z = p.z*sin(k[0].z*p.z)+cos(k[1].z*p.x);
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) + cos(k_{1x} \centerdot y_i) + sin(k_{2x} \centerdot z_i)\\ y_{i+1} & = x_i \centerdot sin(k_{0y} \centerdot x_i) + cos(k_{1y} \centerdot y_i) + sin(k_{2y} \centerdot z_i)\\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot x_i) + cos(k_{1z} \centerdot y_i) + sin(k_{2z} \centerdot z_i)\\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)+cos(k[1].x*p.y)+sin(k[2].x*p.z); pNew.y = p.x*sin(k[0].y*p.x)+cos(k[1].y*p.y)+sin(k[2].y*p.z); pNew.z = p.y*sin(k[0].z*p.x)+cos(k[1].z*p.y)+sin(k[2].z*p.z);
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) - cos(k_{1x} \centerdot y_i) \\ y_{i+1} & = x_i \centerdot sin(k_{0y} \centerdot y_i) + cos(k_{1y} \centerdot z_i) \\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot z_i) - cos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)-cos(k[1].x*p.y); pNew.y = p.x*sin(k[0].y*p.y)+cos(k[1].y*p.z); pNew.z = p.y*sin(k[0].z*p.z)-cos(k[1].z*p.x)
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) - cos(k_{1x} \centerdot y_i) \\ y_{i+1} & = x_i \centerdot cos(k_{0y} \centerdot y_i) + sin(k_{1y} \centerdot z_i) \\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot z_i) - cos(k_{1z} \centerdot x_i) \\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)-cos(k[1].x*p.y); pNew.y = p.x*cos(k[0].y*p.y)+sin(k[1].y*p.z); pNew.z = p.y*sin(k[0].z*p.z)-cos(k[1].z*p.x);
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) - cos(y_i) \\ y_{i+1} & = x_i \centerdot cos(k_{0y} \centerdot y_i) + sin(z_i) \\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot z_i) - cos(x_i) \\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)-cos(p.y); pNew.y = p.x*cos(k[0].y*p.y)+sin(p.z); pNew.z = p.y*sin(k[0].z*p.z)-cos(p.x);
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) - \arccos(k_{1x} \centerdot y_i) + sin(k_{2x} \centerdot z_i)\\ y_{i+1} & = x_i \centerdot sin(k_{0y} \centerdot x_i) - \arccos(k_{1y} \centerdot y_i) + sin(k_{2y} \centerdot z_i)\\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot x_i) - \arccos(k_{1z} \centerdot y_i) + sin(k_{2z} \centerdot z_i)\\ \end{align}
explore
pNew.x = p.z*sin(k[0].x*p.x)-acos(k[1].x*p.y)+sin(k[2].x*p.z); pNew.y = p.x*sin(k[0].y*p.x)-acos(k[1].y*p.y)+sin(k[2].y*p.z); pNew.z = p.y*sin(k[0].z*p.x)-acos(k[1].z*p.y)+sin(k[2].z*p.z);
\begin{align} x_{i+1} & = z_i \centerdot sin(k_{0x} \centerdot x_i) - cos(k_{1x} \centerdot y_i) + \arcsin(k_{2x} \centerdot z_i)\\ y_{i+1} & = x_i \centerdot sin(k_{0y} \centerdot x_i) - cos(k_{1y} \centerdot y_i) + sin(k_{2y} \centerdot z_i)\\ z_{i+1} & = y_i \centerdot sin(k_{0z} \centerdot x_i) - cos(k_{1z} \centerdot y_i) + sin(k_{2z} \centerdot z_i)\\ \end{align}
explore
pNew.x = p.z*p.y*sin(k[0].x*p.x)-cos(k[1].x*p.y)+asin(k[2].x*p.z); pNew.y = p.x*p.z*sin(k[0].y*p.x)-cos(k[1].y*p.y)+ sin(k[2].y*p.z); pNew.z = p.y*p.x*sin(k[0].z*p.x)-cos(k[1].z*p.y)+ sin(k[2].z*p.z);